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Stability properties associated with a specific analytic equilibrium have heen calculated 
to compare the accuracy of three large computational programs that have been developed 
at Garching, Princeton, and Lamanne. All three use a Gale&in formulation of the variation- 
al principle for determining spectra. Good agreement is found, verifying the efficacy of all 
three codes. 

1. INTRODUCTION 

The investigation of the ideal magnetohydrodynamic stability properties of tokamak 
devices is an essential part of current thermonuclear research. We discuss and com- 
pare three independent programs that have been developed to investigate the eigen- 
spectrum for such devices in an ideal modeI: (1) the Garching-Princeton code 
(KERNER) [l]; (2) the Princeton Equilibrium, Stability, and Transport code (PEST) 
[2]; and the Lausanne code (ERATO) [3]. This provides a series of cross checks that 
is essential for validating such large, complex programs. All three use a Lagrangian 
formalism for linearized perturbations to obtain a matrix eigenvalue problem. This 
is solved to obtain any desired portion of the spectrum and its associated set of normal 
modes. To make the comparison, we adopt a specific analytic equilibrium. 

* On loan from Westinghouse Research and Development Center. 
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In Section 2 we give Solov’ev’s equilibrium model [4] and describe some of its 
properties. This rather simple analytic model contains the essential features of a real 
plasma and provides a great deal of numerical and physical insight into what should 
be expected with a more realistic numerically determined equilibrium. We describe 
in Section 3 the similarities and differences with the three normal-mode programs. 
Some specific numerical comparisons are given in Section 4 and a discussion of the 
results in Section 5. 

2. EQUILIBRIUM 

When the pressure is contained solely by the toroidal current, the MHD equi- 
librium equation for the poloidal flux !I’, 

with 

a i aY av 
xmxm+z= d! 27rXJ, = --4rr2X2 dY (1) 

B = & V+ x Vv + R&, V56 (2) 

has the solution 

Y/ = a [X2Z2 + ; (X2 - R2)2] 

if 
p(Y) = (l + m 4 (Y, - Y) 

2nER2q(0) 

(3) 

(4) 

(see Fig. 1). Here (X, 4, 2) is a cylindrical coordinate system, BO is the toroidal field 
at the magnetic axis X = R, p(Y) is the material pressure, and 

q(y) = RBo $ V/X I Vy II (5) 

<I’+$ < j-, 
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FIG. 1. Magnetic surfaces for a family of equilibria with E = 4, E = 2, showing lines of constant 
$ and 0 for the coordinate systems used in the KERNER (a) and PEST (b) codes. The ERATO 
code uses & and 0, as coordinates. 
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is the safety factor. The contour of integration is along a line of constant Y and I#. 
We characterize the system by the parameters E, E = [YBq(0)/.rrER2B,]1~2, and q(0); 
E determines the ellipticity at the magnetic axis, E fixes the aspect ratio, and q(0) can 
be associated with the magnitude of the toroidal current. 

3. FORMULATIONS 

There has been considerable interaction between the groups that developed these 
three codes [l-3] for determining the spectrum and investigating instabilities of 
tokamak configurations. Thus there are similarities among them. Nevertheless, they 
have significant differences [5]. Since each has been carefully described, we merely 
comment on these similarities and differences. 

A. Equlibrium 

The KERNER code [I] utilizes the analytic properties of the equilibrium of Eq. (3) 
and is thus restricted in its application. Both the PEST code [2] and the ERATO 
code [3] can accept any equilibrium configuration for which Y(X, Z) is specified on 
a rectangular mesh. An equilibrium routine [6] is an integral part of the PEST package. 
The ERATO code is interfaced to the Oak Ridge equilibrium solver [7]. 

B. Coordinates 

All three codes use a nonorthogonal (#, 0, 4) fl ux coordinate system for the stability 
analysis. In the KERNER program & CC Y1j2 and ~9~ = tan-l[2XZ/E(X2 - R2)] 
such that the transformations to the new coordinates can be performed analytically. 
In the PEST code #, CC $ dr/X2 and e2, is chosen to make $ = (V$p x V8, . 
V+)-’ oc X2 so that the magnetic field lines appear to be straight. The ERATO 
code uses the KERNER flux label ul, and the PEST angle 0,. Both of these codes 
utilize a mapping routine [2] to determine X($, 19) and Z(#, 19) given Y(X, Z). 

C. Variational Approach 

The normal modes associated with linearized perturbations around the equilibrium 
are determined by making the Lagrangian 

2 = W2m*, S) - 6 w(s*, 5) (6) 

stationary with respect to the displacement vector 5, with K and 8 W the kinetic and 
potential energy functionals [8]. A Galerkin method in which 5 is approximated by 
a superposition of J linearly independent expansion functions, 
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leads to the matrix eigenvalue problem 

D. Decomposition of Eigenvectors and Expansion Functions 

Special care must be taken to provide an adequate description of the different 
branches of the spectrum when computing the normal modes. Thus, in each of the 
approaches a specific decomposition of the eigenfunctions and a special choice for 
the expansion functions has been developed. In each case, Fourier decomposition in 
4; i.e., g(#, 8, 4) = Cla ‘&(#, 6) exp in4, has been used since the symmetry of the 
equilibrium decouples modes with different It’s. 

The KERNER code uses modified eigenfunctions of the corresponding straight 
configuration [9] as expansion functions. Thus 5 is expanded in terms of three ortho- 
gonal vectors, corresponding to the fast magnetosonic, shear AlfvCn, and slow sound 
branches; 

(9) 

where the $,‘s are Bessel functions of # with v nodes. Since these global functions 
reduce to the exact eigenfunctions in the large aspect ratio limit for a circular cross- 
section device, this provides sufficient separation of the branches. The expansion 
functions associated with the AlfvCn branch Sty satisfy V * 5/X2 = 0 exactly to 
guarantee good separation from the fast magnetosonic modes. 

In the PEST code the decoupling of the different branches is accomplished by 
setting 

Y5* 
’ = R2B0 

fSs VBxB+iR2B BxV#+i$B 00) 
0 0 

with 
& = 6 - 2dagjae, 5, = 2amh (11) 

and using 5, 6, and tb as independent variables. Then, the slow branch is associated 
primarily with parallel flow & , and the shear Alfvtn branch with the stream function 
5 for incompressible perpendicular flow. Using Fourier components in 8 enables one 
to evaluate B . Vg accurately on surfaces near where 1 - nq(#) = 0. Linear finite 
elements are used for the +-dependence of 5 and 6 and piecewise constant functions 
for tb . Then the errors in evaluating V * EL/X2 and V * 5 are small. 

Mercier’s formulation of 6 W [lo] is used in the ERATO code with the decompo- 
sition 

g = X2& V$ x V8 + $5, V# x V$ + $ &,B. (12) 

Finite elements are chosen as expansion functions in both # and 0. These coefficients 
are complex but because of mirror symmetry about the Z = 0 plane only those for 
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0 < ?I need be included. The potential energy 6 W is put in a form with four positive 
terms and one that can become negative. The expansion functions are chosen so that 
each term can vanish separately. These conditions cannot be satisfied everywhere with 
the usual finite elements. Therefore, the Lagrangian is written formally as depending 
on seven variables, & , a&@,4 a&/a& [, , @,/a0 , &, , and a&,/8, with the constraints 
that the derivatives be correctly approximated at the mesh points. The error intro- 
duced by this technique decreases with a finer resolution in the grid. The smallest 
eigenvalue converges from below to the exact value and the effective value of 4 is 
shifted by a quantity that vanishes with the mesh size. In the usual Lagrangian 
formalism, e.g., the KERNER and PEST codes, the convergence is from above. 

E. Vacuum Region 

In the KERNER code the perturbed magnetic field in the vacuum region is 
expressed in terms of a vector potential A. This is expanded in a set which consists 
of the solutions for the analogous straight system. The volume calculation is performed 
using the same coordinate system as in the plasma region. Thus, the vacuum boundary 
must be a perfectly conducting surface obtained by setting Y equal to a constant in 
Eq. (3). This surface has an aspect ratio cW defined in the same way as for the plasma 
boundary. It is parameterized by (1 = E~/E~ = (YW/Y&1I2. Since this is not a flux 
surface in the vacuum, the equilibrium field must penetrate this wall. The vector 
potential is evaluated with a Galerkin procedure, taking into account the boundary 
conditions, and thus requiring a matrix inversion. 

Both the PEST and ERATO codes express the perturbed field in the vacuum region 
in terms of a scalar potential and use Green’s functions to determine the contri- 
bution to 8 Win terms of the normal component of 5 at the plasma-vacuum interface. 
Special care [2, 1 l] is taken to ensure that the flux constraints are satisfied. 

In all three codes the normal component of the displacement vector can be made to 
vanish at the plasma surface, corresponding to the plasma filling a perfectly conducting 
vessel. 

F. Matrix Evaluation and Diagonalization 

The global functions used in the KERNER code make the evaluation of the matrix 
elements difficult. Each matrix element involves integration of oscillatory functions 
over the entire volume. However, by taking advantage of the special analytic equi- 
librium and an extended algebraic calculation [ 121, the e-integration is done accurately. 
Integrations over $ are done with high-order Gaussian quadratures. 

In the PEST code the matrix elements involve the computation of simple Fourier 
transforms over well-behaved functions which can be done quickly using a standard 
Fast-Fourier-Transform routine. Integrations over 4 are done by a composite 
Simpson’s quadrature rule. The ERATO code uses a single-interval rectangular rule 
in both directions. 

In principle, global functions can be found that approximate a given eigenfunction 
more accurately than local functions, and so yield faster convergence. However, local 
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functions produce sparse, banded matrices. Thus, local function programs can utilize 
much larger matrices without loss of efficiency. 

A standard eigenvalue package adequately determines all the eigenvalues of the 
matrix K-lj2 6 W K-l12 for the smaller matrices associated with the global and mixed 
Fourier-finite-element methods. For the larger matrices, determination of the struc- 
ture and growth rate of the most unstable modes is accomplished in all three programs 
by using an inverse iteration routine [13] that preserves the sparseness of the matrix. 

G. Convergence Studies 

An accurate representation of the eigenvalues and associated eigenfunctions generally 
demands that a very large number of expansion functions be used. Since this number 
is limited by the computer memory or other considerations, it is often necessary to 
extrapolate the results obtained from the use of successive sets of functions. 
Fortunately, we need only a few points because the extrapolation formulas are simple. 

In the KERNER and PEST codes, convergence is studied by varying the number 
of radial functions M and Fourier components L independently of each other. 
Usually .Q2 scales as Do2 - CL exp(-a&) with ol, N 1 for fixed M, and as 
Q,2 - CM exp(--cu,M) for KERNER and Q,2 - C,IL-~ for PEST at fixed L. The 
constants, CL, ol,, CM, 01~) can be determined empirically. The exponential con- 
vergence is a reflection of the efficacy of a set of analytic functions for representing 
well-behaved analytic functions. 

With the ERATO code, G2 scales at worst as fi2 = Go2 + C,L-2 for fixed M and 
9 = Qno2 + CMM-2 for fixed L. Advantage is usually taken of the fact that conver- 
gence of O(M-4) can be achieved if L = it4 for fixed-boundary cases. For free surface 
modes, the convergence can depend sensitively on the safety factor. 

H. Memory Requirements and Computing Time 

The fundamental limitation on accuracy in these calculations is determined by the 
number of expansion functions that can be accomodated in the available memory and 
the processor time on the computer. Of these, for practical purposes, memory require- 
ments for storage of the matrices are usually most severe. For the different methods, 
the number of nonzero matrix elements which must be calculated and stored scale as 

SK - 9L2M2 + #L&f, (13) 

SP - yL2M + #LM - 9L”, (14) 

SE - 93LM + 2(L + M). (15) 

In the implementation, however, some of the sparseness features can not be fully 
utilized. In practice, the banded matrices do not have to be core resident. Thus, we 
find that the individual implementations do not differ significantly in total memory 
requirements, primarily because of other coding factors. 
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The KERNER code is used on an IBM 360/91 and a DECPDP-10 machine. Its 
needed memory space is given by 

W w 50000 + 36(LM)2 (16) 

words, where L is the number of Fourier modes in 6’ and h4 the number of global 
test functions in #. Typical numbers are L = 3, M = 7, yielding W m 90000. 

The PEST code is implemented on a CDC-7600, in an overlaid format. In its present 
version, the memory space scales as 

W% 16000 + L(48L + 64M + 800). (17) 

Typical numbers are L = 2 1, M = 32, yielding W m 96000 words. 
The ERATO code is implemented on a CDC-6500. This code makes extensive use 

of peripheral memory units. The resident memory space is set by the eigenvalue 
solver as 

W w 16000 + (L + 1)(32L + 18M + 42). (18) 

Typical numbers are L = M = 28, yielding 58,000 words. 
The computing time is set largely by the mapping and the eigenvalue-solver, the 

latter being common to all three codes. The KERNER code does the mapping ana- 
lytically and requires little time for this phase. The PEST code has a large grid in 
4, 8 and requires 

Tw tM, (19) 

where t m 0.8 set on a CDC-7600. A typical value of M would be 48, yielding 
T = 40 sec. This figure could be further optimized, but this is perhaps not of highest 
priority since the results from one mapping are used many times in the stability 
studies. The mapping grid for the ERATO code requires fewer flux surfaces, and the 
time required is reduced by approximately a factor of 2. 

The eigenvalue solver is common to all three codes. The cpu time is 

T m 64L2M(t,L + t,N), (20) 

where N is the number of iterations; tl w 52 psec and t, w 42 psec on the CDC-6500. 
Use of machine coding reduces to tl to 26 psec. Typical values, L = M = 28, 
yield T M 23 min. It translates to about 2 min on the CDC-7600. 

4. COMPARISON 

Here we discuss several choices of the parameters. These have been chosen primarily 
to provide tests of the accuracy of the programs, rather than for application to a 
specific device. 
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A. Nearly Straight Circular Column, Fixed-Boundary 

E = l/20, E = 1, (1 = 1, q(0) = 0.08519, at = 10. 

The spectrum for a fixed-surface case, determined by the PEST code using three 
Fourier components in 9, 0 ,< 1 < 2, and seven finite elements in #, and by the 
KERNER code using seven sets of Bessel functions is shown in Fig. 2. The agreement 

01t 

FIG. 2. The spectra obtained from the KERNER and PEST codes for an almost straight, circular 
plasma with c = l/20, E = I, A = 1, q(0) = 0.08519, n = 10. In both cases three Fourier com- 
ponents and seven radial expansion functions are used. The KERNER functions are well suited 
for the global modes of this case and two unstable modes are found. The second unstable mode 
appears in PEST when the number of finite elements is increased. 

between the calculations is significantly better than that reported earlier [5], thanks 
to finding a coding error during a detailed study of the discrepancy. There is no 
significant difference in the values for the discrete modes. The ranges for the con- 
tinua also agree; the differences in the positions of the sets of modes that represent 
them are due to the tendency of the global model to localize modes between the zeros 
of the Bessel functions whereas the finite-element approach places them near equally 
spaced mesh points in jr. Exact agreement is obtained by using larger matrices. 

B. Large Aspect Ratio, Nearly Circular Case, Free-Boundary 

E = l/6, E = 1, A = 2, n = 1. 
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We consider a free-boundary case with a perfectly conducting wall placed on the 
surface A = (Y’,/YB)1/2 = 2. The growth rate of the most unstable mode is shown 
in Fig. 3 as a function of q. Converged results are given in Table I for q(0) = 1.79 
[q(s) = 2.01 and q(0) = 2.24 [q(s) = 2.51. 

q(O) - 

FIG. 3. Plot of -Q* versus q for the case with B = ),E=l,A=2,andn=l.Thedotsand 
circles are the results of the KERNER and PEST codes, respectively. 

TABLE I 

Comparison of Specific Results for the Different Cases” 

E E A 40) q(s) n KERNER PEST ERATO 

Q 1 2 1.7910 2.0 1 0.202 0.204 
8 1 2 2.2387 2.5 1 0.504 0.506 
Q 2 1 0.3 0.5224 2 0.413 0.427 0.431 
5 2 1 0.7 1.2190 2 0.118 0.119 0.120 
4 2 co 1.2 2.0897 1 0.75 0.78 
i 2 co 2.0 3.4829 1 0.68 0.75 
t 2 cc 0.6 1.0449 2 1.31 1.40 
+ 2 cc 1.0 1.7415 2 1.03 1.07 

o Each of these is obtained from convergence studies illustrated by Fig. 5. The eigenvalue Qa is 
given in terms of the poloidal Alfven time; Qe - w*fpq”(s)Ra/E,,e]. 

C. Small Aspect Ratio, Elliptical Case, Fixed-Boundary 

E = l/3, E = 2, (1 = 1, n = 2 

The growth rate is given as a function of q(0) in Fig. 4. Converged results for the 
three codes are given in Table I for q(0) = 0.3 and q(0) = 0.7. Convergence curves 
are shown in Fig. 5. 
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FIG. 4. Plot of -G versus 4 for:c = 9, E = 2, A = 1, n = 2. The curve is obtained by the 
ERATO code. The results from all three codes for points at q(0) = 0.3 and q(O) = 0.7 are compared 
in Table I. 
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FIG. 5. Illustration of how the results of Table I are obtained for KERNER (a) and PEST (b), 
where Q = &, E = 2, /1 = 1, q(0) = 0.3, and n = 1. The eigenvalues are extraplotated numerically 
in L for each of three values of M; the resultant values are subsequently extrapolated in M. 
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FIG. 6. Plot of --@ versus q for E = $, E = 2, A = co, n = 2. The curve is obtained by the 
ERATO code. The results from PEST and ERATO are compared in Table I. 

FIG. 7. Projection of the displacement vector onto a constant 4 plane for the Q = 4, E = 2, 
n = 1, q(0) = 0.7, n = 2 case, as obtained with the PEST code. 
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D. Small Aspect Ratio, Elliptical Case, Free-Boundary 

E = l/3, E = 2, il = 00, n = I 

The growth rate for this case is presented in Table 1 for q(O) = 1.2 and q(0) = 2.0. 

E. Small Aspect Ratio, Elliptical Case, Free-Boundary 

E = l/3, E = 2, A = 00, n = 2. 

The growth rate for this case is given in Fig. 6, with converged results for q(0) = 0.6 
and q(0) = 1.0 in Table I. 

F. Eigenfunctions 

Reconstruction of the eigenfunctions is useful for the interpretation of results 
and helps in understanding the physical nature of the modes. The KERNER code 
lists the coefficients of the different 1, v expansion functions from which such a recon- 
struction is possible. The PEST code has this feature built into it, and displays the 
eigenvector or plots of its components as functions of I,LJ or 0 as part of the program. 
The ERATO code can list the coefficients for constructing a vector plot. Figure 7 
shows typical results for the E = l/3, E = 2, (1 = 1, q(0) = 0.7, n = 2 case. 

5. DISCUSSION 

The purpose of this work is to compare the three codes for a few specified identical 
equilibria. The good agreement between the results, including both internal and exter- 
nal modes, provides confidence in the accuracy of each of the codes. Indeed, it would 
be useful to treat these specific cases as standards for comparing the efficacy of other 
stability codes. 

Within the totality of all conceivable ideal MHD stability problems, there are 
probably many that would test any of these codes. Since the numerical expansion 
procedures can all be shown analytically to converge asymptotically for the most 
unstable mode, the most likely source of difference would be in the relative ease in 
achieving an accurate result, i.e., the number of expansion functions required. Our 
general experience has shown no regions of parameter space where large differences 
between the stability results from the three codes should be expected. With respect 
to an accurate representation of the whole spectrum, it is clear that problems may 
arise in special cases. 

The KERNER code, with its analytic equilibrium and its relatively small matrices, 
is particularly useful for studies of general physics questions associated with internal 
modes. However, in small aspect ratio tokamaks, its application to kink instabilities 
is somewhat limited since the vacuum wall must lie on a constant Y-surface of Eq. (3), 
which is generally close to the plasma-vacuum interface. A large part of its application 
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has been to the numerical study of the limits of applicability of localized instability 
criteria [lo, 14, 151. 

The PEST and ERATO codes are more general in that they can treat numerically 
determined equilibria, provided that there are no internal separatrices. An outer 
conducting shell can be placed arbitrarily. This ability to study any aspect of the 
stability problem brings with it the concomitant difficulty that care must be taken in 
the interpretation of the results. Very large matrices must often be used and conver- 
gence studies are essential. 

With the size and cost of experimental devices increasing rapidly, more careful 
theoretical studies of what should be expected are becoming more and more essential. 
Thus, these codes have been developed just in time to make an impact on the magnetic 
fusion energy program. 
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